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Abstract - The physiological severity of a stenosis is
determined by its fractional flow reserve (FFR). Coronary
arteriosclerosis is a diffuse disease, and it is not uncommon
for 2-3 serial lesions to be observed in the same vessel.
Direct measurement of the physiological severity of each
lesion is impossible due to the hemodynamic interaction
between them. The “true FFR” of a given lesion is defined
as the FFR that would be measured if other stenoses in the
same vessel were absent. Applying the hypothesis that the
pressure gradient across a stenosis is proportional to the
square of the flow, we obtained equations that are non-
sensitive to collateral flow. We applied these equations to
the human data of 32 patients with tandem stenoses that
were presented by Pijls et al.. The correlation between the
true FFR calculated by the suggested method and the FFR
measured after treatment of one of the lesions for all 32
patients was significant (R=0.9).

Keywords - Coronary stenosis, fractional flow reserve,
coronary physiology.

I. INTRODUCTION

The physiological severity of a stenosis is determined by its
fractional flow reserve (FFR). The FFR is a ratio of the
hyperemic blood flow in a stenotic vessel to the hyperemic
flow in a stenosis-free vessel. Coronary arteriosclerosis is a
diffuse disease, and it is not uncommon for 2-3 serial
lesions in the same vessel to be observed in clinical practice.
Direct measurement of the physiological severity of each
lesion is impossible due to the hemodynamic interaction
between them. The “true FFR” of a given lesion is defined
as the FFR that would be measured if other stenoses in the
same vessel were absent. Pijls et al.[1] recently proposed a
new method for the calculation of the true FFR of each
lesion in the case of a tandem lesion. The obtained equations
allowed the estimation of the true FFR of each lesion but
only if the wedge pressure were known, meaning after
treatment of one of the multiple lesions. The equations
reported by Pijls et al. [1] were based on the linear pressure-
flow relation across a stenosis. We had earlier suggested
that the pressure gradient across a stenosis is proportional to
the square of the flow [2]. Applying this hypothesis to a
case of a tandem lesion, we obtained equations that are less
sensitive to collateral flows. The true FFR may then be
calculated by using the measured values of the hyperemic
pressures only, without needing to know the wedge
pressure.

When there is a side branch between stenoses, the
effect of branch steal [1] precludes the calculation of the
true FFR of the individual lesion by means of hyperemic
pressure measurements alone. In the present paper, we
obtained equations allowing the calculation of the true FFR
in such cases, under the condition that the coronary flow
reserve (CFR) across each lesion is known. The method of
making the CFR calculation using pressure measurements
was described earlier [2].

II.THE MATHEMATICAL MODEL.

The flow in a coronary blood vessel with N serial stenoses
is analyzed. P0 is the aortic pressure, Pi is the pressure
measured distal to stenosis number i measured during
maximal hyperemia, Rv is minimal vascular bed resistance
(i.e., resistance achieved during maximum hyperemia), and
QN is the hyperemic flow in a vessel with N stenoses. Partial
FFR of the first k lesions (pFFRk) was defined as the ratio of
the hyperemic pressure distal to stenosis number k to the
aortic pressure:

pFFRk=Pk/P0 , k=1,…,N.                             (1)
The FFR of all the lesions in combination is pFFRN. The
vascular bed is assumed as being purely resistive, thus

pFFRN=(QN+Qc,N)/Qmax     (2)
where QN +Qc,N and Qmax are hyperemic flows through the
vascular bed in the vessel with N serial stenoses and in a
non-stenotic vessel, respectively, and Qc,N is the collateral
flow.

The pressure gradient across stenosis ∆P is
assumed to be proportional to the square of the flow Q:

∆P=αQ2                                        (3)
where the constant α is a function of the stenosis geometry
only.

In the case of serial stenoses without collaterals
(Qc,N=0), the flow Q through each stenosis and vascular bed
is the same and equal to QN. Applying the equations (1-3)
to lesion number k yields:
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If only lesion k exists in the blood vessel, then the
hyperemic flow Qk=FFRkQmax, where FFRk is the true FFR
of lesion k. The pressure-flow relation across the lesion may
be expressed as:
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The right hand sides of the equations  (4) and (5) are the
same. Hence, their left hand sides are equal, thereby
resulting in a quadratic equation for the true FFR:
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The last equation allows the calculation of the true FFR of
lesion k based on four pressure measurements during
maximal hyperemia. The method may be generalized for
coronary vessels with collateral flows and for a case of a
small side branch between lesions.

III. RESULTS.

We applied equation (5) to the human data of 32 patients
with tandem stenoses that were presented in Table 2 of Pijls
et al.'s study [1]. The correlation between the true FFR as
calculated by eq. (5) and the FFR measured after treatment
of one of the lesions for all 32 patients was significant
(R=0.9).

The suggested equations allow the estimation of
the hemodynamic interaction between lesions. The
following is an example of an analysis of an artery with 2
equal stenoses, each having the same true FFR
(FFR1=FFR2=FFR). The equations (5) allow calculating of
the FFR of both lesions together (pFFR2) and partial FFR of
the first lesion. The apparent FFR of the lesion i (aFFRi) is
defined as the ratio of the pressures distal and proximal to
the lesion measured during maximum hyperemia.
aFFRi=pFFRi/pFFRi-1. The calculated values of the FFR of
both lesions and apparent FFR of each lesion are presented
in the figure.
 This example explains the significant growth of the
hyperemic pressure gradient across the first lesion after
stenting of the second lesion that is sometimes observed in
clinical practice.

IV. CONCLUSION.

Quadratic equations allowing the calculation of the true FFR
of each stenosis in serial stenoses are proposed. The
equations allow for the calculation of the true FFR if
hyperemic pressure is measured distal to each lesion.
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